p-Adic Path Integrals for Quadratic Actions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 p - ADIC PATH INTEGRALS FOR QUADRATIC ACTIONS

The Feynman path integral in p-adic quantum mechanics is considered. The probability amplitude K p (x ′′ , t ′′ ; x ′ , t ′) for one-dimensional systems with quadratic actions is calculated in an exact form, which is the same as that in ordinary quantum mechanics.

متن کامل

Path Integrals for a Class of P - Adic Schrödinger Equations

The theme of doing quantum mechanics on all abelian groups goes back to Schwinger and Weyl. If the group is a vector space of finite dimension over a non-archimedean locally compact division ring, it is of interest to examine the structure of dynamical systems defined by Hamiltonians analogous to those encountered over the field of real numbers. In this letter a path integral formula for the im...

متن کامل

Analytic P-adic Cell Decomposition and P-adic Integrals

Roughly speaking, the semialgebraic cell decomposition theorem for p-adic numbers describes piecewise the p-adic valuation of p-adic polyno-mials (and more generally of semialgebraic p-adic functions), the pieces being geometrically simple sets, called cells. In this paper we prove a similar cell decomposition theorem to describe piecewise the valuation of analytic functions (and more generally...

متن کامل

Standard p - adic integrals for GL ( 2 )

The p-adic integrals evaluated here were explicitly introduced only in the later 20th century, starting with Tate and Iwasawa in 1950, by MacDonald in the 1950s, in the 1960’s by Gelfand and Piatetski-Shapiro, Jacquet, Shalika, and then by Jacquet-Langlands in 1970, although shadows of them appeared long ago in the work of Lagrange, Legendre, Gauss, Galois, and Dirichlet. From our vantage, they...

متن کامل

Adelic Path Integrals for Quadratic Lagrangians

where K(x′′, t′′; x′, t′) is the kernel of the corresponding unitary integral operator acting as follows: Ψ(t′′) = U(t′′, t′)Ψ(t′). (1.2) K(x′′, t′′; x′, t′) is also called Green’s function, or the quantum-mechanical propagator, and the probability amplitude to go a particle from a space-time point (x′, t′) to the other point (x′′, t′′). Starting from (1.1) one can easily derive the following t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modern Physics Letters A

سال: 1997

ISSN: 0217-7323,1793-6632

DOI: 10.1142/s0217732397001485